## Exercise 47

A plane flying with a constant speed of $300 \mathrm{~km} / \mathrm{h}$ passes over a ground radar station at an altitude of 1 km and climbs at an angle of $30^{\circ}$. At what rate is the distance from the plane to the radar station increasing a minute later?

## Solution

Draw a schematic of the plane's path at a certain time.


The aim is to find $d r / d t$ when $t=1 \mathrm{~min}=(1 / 60)$ hour. Start with the formula relating the sides of this triangle, the law of cosines.

$$
\begin{aligned}
r^{2} & =1^{2}+x^{2}-2(1)(x) \cos 120^{\circ} \\
r & =\sqrt{1+x^{2}-2 x\left(-\frac{1}{2}\right)} \\
& =\sqrt{x^{2}+x+1}
\end{aligned}
$$

Take the derivative of both sides with respect to $t$ by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(r) & =\frac{d}{d t}\left(\sqrt{x^{2}+x+1}\right) \\
\frac{d r}{d t} & =\frac{1}{2}\left(x^{2}+x+1\right)^{-1 / 2} \cdot \frac{d}{d t}\left(x^{2}+x+1\right) \\
& =\frac{1}{2}\left(x^{2}+x+1\right)^{-1 / 2} \cdot\left(2 x \cdot \frac{d x}{d t}+\frac{d x}{d t}\right) \\
& =\frac{1}{2}\left(x^{2}+x+1\right)^{-1 / 2} \cdot(2 x+1) \frac{d x}{d t} \\
& =\frac{2 x+1}{2 \sqrt{x^{2}+x+1}} \frac{d x}{d t}
\end{aligned}
$$

Therefore, when the plane travels a distance, $x=300 *(1 / 60)$ kilometers, one minute later, the rate of change of the distance from the plane to the radar station with respect to time is

$$
\left.\frac{d r}{d t}\right|_{x=300 / 60}=\frac{2\left(\frac{300}{60}\right)+1}{2 \sqrt{\left(\frac{300}{60}\right)^{2}+\left(\frac{300}{60}\right)+1}}(300)=\frac{1650}{\sqrt{31}} \frac{\mathrm{~km}}{\mathrm{~h}} \approx 296.349 \frac{\mathrm{~km}}{\mathrm{~h}} .
$$

